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The HSP90 (heat shock protein 90), SGT1 (suppressor of G-two allele of SkpT), and RAR1 (required for Mla12 resistance) pro-
teins in plants form a molecular chaperone complex which is involved in diverse biological signaling including development
and disease resistance. The three components of this complex interact via specific protein binding motifs and recruit client
proteins to initiate a specific signaling cascade in response to cellular or environmental cues. Although the functions of this
chaperone complex during development/growth have not been well characterized, the HSP90 chaperone and SGT1 and RAR1
co-chaperones have been demonstrated to be essential signaling components of plant immune responses. These three pro-
teins also play important roles in activation of the mammalian Nod genes, which possess a structurally conserved plant resis-
tance (R) protein motif, NB-LRR (nucleotide binding site-leucine rich repeat). In this review, we summarize the structures and
functions of these molecular chaperones, and discuss their putative modes of action in plant immune responses.
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HSP90, SGT1, AND RAR1 ARE COMPONENTS OF
MOLECULAR CHAPERONE COMPLEXES THAT
ARE CONSERVED ACROSS THE PLANT
AND ANIMAL KINGDOMS

Molecular chaperones participate in not only the folding
of newly synthesized proteins but also in several biologjcal
and cellular processes such as cell growth, development and
signal transduction (Helmbrecht et al., 2000; Pavithra et al.,
2007). The chaperone families of stress proteins including
HSP40/70/90/100, and the small HSP proteins, are highly
conserved in most organisms from bacteria to higher eukary-
otes. In particular, the cytosolically abundant HSP90 pro-
tein furctions in the diverse cellular processing of proteins
such as folding, localization, and proteolysis (Pearl and Pro-
dromou, 2006; Brown et al., 2007). Ancther identified
functior of HSP90 is as a buffer of genetic variation in
developmental processes (Queitsch et al., 2002).

HSP30 plays a key role as a core component of various
protein complexes that associate with other co-chaperones.
The largest class of co-chaperones includes proteins such as
Hop (HSP70- and HSP90-organizing protein} and Cyp40,
which harbor one or more tetratricopeptide repeat (TPR)
domains. A number of other TPR-containing co-chaperones
include E3/E4 ubiquitin ligase from Cos-7 cells, protein
phosphatase 5 (PP5) from mouse and plant, and prolyl
isomerases from yeast which convey their own catalytic
activities (Dolinski et al., 1997; Silverstein et al., 1997; Jiang
et al., 2001; de la Fuente van Bentem et al., 2005). More-
over, HPS90 also interacts with non-TPR-type co-chaperones,
such as p23 (Shal in yeast), in an MEEVD (a pentapeptide
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motifl-independent manner. Hence, it is possible that
HSPI0 is associated with both TPR-type and non-TPR-type
co-chaperones (Takahashi et al., 2003).

Through its association with co-chaperones, HSP90 acti-
vates and catalyzes more than 100 clients to process cell
cycle, developmental, and signaling events (Pearl and Pro-
dromou, 2006; Pavithra et al., 2007). These substrates
include telomerase (Holt et al., 1999), nitric oxide synthase
(Lei et al., 2007), nuclear hormone receptors (Pratt and Toft,
2003), and protein kinases (Pearl, 2005), suggesting that this
chaperone has essential functions in the activation of a vari-
ety of biological functions. In particular, protein kinases
comprise the most prevalent group of HSP90 clients and are
delivered to the HSP90 complex via an interaction with the
co-chaperone Cdc37 (Shao et al., 2003). Bound kinases are
stabilized and become active upon stimulation by the
appropriate signals (Pearl, 2005).

In plant species, HSP90 isoforms are required for disease
resistance against invading pathogens. For example, the
AtHSP90.1 and AtHSP90.2 genes in Arabidopsis are required for
the RPS2-mediated resistance against Pseudomonas syringae
expressing AvrRpt2 and for RPMT-mediated resistance to P
syringae expressing AvrRPM1, respectively (Fig. 1; Hubert et
al., 2003; Takahashi et al., 2003). HSP90 is also essential for
Rx-mediated resistance to Potato virus X (PVX), N-mediated
resistance to Tobacco mosaic virus, and Pto-mediated resis-
tance to P syringae expressing AvrPto (Lu et al. 2003; Liu et
al. 2004). In contrast, the hsp90.2-3 mutant with a point
mutation in the ATP-binding domain of AtHSP90.2, known
to be more sensitive to biotrophic pathogens, is more resis-
tant to the herbivare Trichoplusia ni (Fig. 1; Sangster et al.,
2007). These findings demonstrate that HSP90 plays an
important role in the appropriate integration of diverse dis-
ease resistance signaling in higher plants.
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AtHSP90.1 AtHSP90.2
Gene expression Stress-inducible Constitutive
R protein specificity RPS2 RPM1
of resistance to P. syringae
Basal herbivore
resistance No change Enhanced resistance
in mutants
Growth phenotype Normal Narrow leaves,
in mutants delayed development
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Figure 1. Functional specificity of Arabidopsis HSP90 lsofonns, AHSP90.1 and AtHSP90.2, in disease resistance and plant development.

AIHSP90.1 is highly
attenuation of RPS2- and RPM1-mediated resistance to P :

siress-indudible, whereas AtHSP90.2 is consﬁmtwely expressed. Inhibition of AtHSP90.1 and AtHSP90.2 result in the
 jsolates, mf)ecmely In contrast, an A#HSP90.2 mutant, hsp90.2-3, is more

resistant to the herbivore T. ni. In addition, mutations in AtHSP90.2 yield a highly significant over-representation of seedlings with narmow leaves

and delayed development (Sangster et al., 2007).

SGT1, a TPRtype co-chaperone of HSP90, functions in
diverse processes such as immunity, CBF3 (centromere bind-
ing factor 3} kinetochore assembly (comprising SKP1,
CTF13, NDC10 and CEP3), SCF (SKP1-Cullin/CDC53-F hox)
ubiquitin ligase complexes and cyclic AMP signaling (Kita-
gawa et al. 1999; Dubacq et al, 2002). Kinetochores
assemble on centromeric DNA and thereby mediate the
interaction of chromosomes with the mitotic spindle (Cleve-
land et al., 2003). SGT1 physically interacts with SKP1, a
component of the CBF3 kinetochore assembly and of SCF
ubiquitin figase complexes. Hence, SGT1 is essential for cell
cycle progression at the G1/S and G2/M phases (Kitagawa et
al., 1999) and for SCF-mediated ubiquitination activity. In
higher plants, ubiquitination is known to be involved in phy-
tohormone, light, sucrose, immunity and developmental
pathways (Callis and Vierstra, 2000). HSP70 is also a target
of SGT1 (Spiechowicz et al., 2007). The fact that HSP70
contacts SGTT and facilitates its transfer to HSP90 indicates
that SGT1 is a component of multi-protein chaperone com-
plexes. Notably, the Arabidopsis SGTT (AtSGT1b) gene has
been identified in mutational analysis for loss of RPP5- and
RPP7-mediated resistance (Austin et al., 2002; Tor et al,,
2002), indicating that SGT1 also plays an important role in
disease resistance signaling in higher plants.

The non-TPR-type co-chaperone RART is an essential
component of the R protein-mediated resistance responses
in both monocot and dicot plant species. For example, in
barley (Hordeum vulgare}, a monocot, RART was identified
due to its requirement in the Mla72-mediated resistance to
powdery mildew (Blumeria graminis f. sp. hordei) (Shirasu et
al., 1999). In the dicot Arabidopsis, rarT mutants fail to per-
form R protein-mediated resistance in response to patho-
genic P syringae and Peronospora parasitica (Austin et al.,
2002; Tornero et al., 2002).

A growing body of evidence now suggests that HSP90,
SGT1, and RAR1 functionally co-operate as a molecular

chaperone complex to transduce plant immune responses.
Interestingly, the mammalian Nod family also requires
HSP90/SGT1/RAR1 to activate and mediate innate immune
responses, indicating that +5P90, SCT1 and RART play sim-
ilar roles in the immune rasponse in both plant and animal
species (Hahn, 2005; da Sitva Correia et al., 2007a).

STRUCTURES AND P'HYSICAL INTERACTION
MOTIFS OF HS30, SGT1, AND RAR1

HSPo0

Structural analyses of HSP90 through its crystallization or
through introduced mutations have revealed that this pro-
tein harbors an N-terminal clomain with the capacity to bind
nucleotides and chemical agents, a middle segment contain-
ing a catalytic loop and muoitifs for binding client proteins,
and a C-terminal domain that is essential for dimerization.
The HSP90 N-terminal pocket contains a binding site for
ATP as has been revealed by experiments using competitive
inhibitors of ATP binding, such as geldanamycin and radici-
col (Stebbins et al., 1997). A number of mutagenesis studies
have also implicated the miiddle segment of this chaperone
as a major binding site for client proteins (Sato et al., 2000).
The C-terminal domain of HSP9Q is of particular impor-
tance also as it contains the MEEVD motif which is impli-
cated in the binding of co-chaperones with TPR domains
such as SGT1 (Chen et al., 1998; Prodromou et al., 1999).

SGT1

SGT1 has three known domains: a tetratricopeptide
repeat (TPR), a cysteine- and histidine-rich domain (CHORD)
and SGT1 (CS), and an SGT1-specific (SGS) motif. Two vari-
able regions (VR1 and VR:Z! are inter-spaced between the
TPR and CS, and between the CS and SGS motifs, respec-
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tively. These three domains appear to have distinct protein-
protein motifs. The TPR domain of yeast SGT1 binds Skp1,
a protein component of the SCF ubiquitin ligase complex
(Kitagawa et al., 1999). It has also been shown that the TPR
domain mediates inter-protein associations (Cliff et al.,
2005; Cortajarena and Regan, 2006). In addition, the
dimerization of TPR-mediated SGT1 has been demonstrated
in barley and is ionic-strength-dependent (Nyarko et al.,
2007). The SGS domain of the human SGT1 has also been
shown to associate with calcyclin (Nowotny et al., 2003).

RAR1

RAR1 is comprised of highly similar but distinct cysteine-
and histidine-rich zinc-binding domains (CHORDs), an N-
terminal CHORDI and a C-terminal CHORDII. The central
region of this protein also contains a cysteine- and histidine-
containing motif (CCCH meotif). Although the function of the
CCCH motif is currently unknown, CHORD-containing pro-
teins have been shown to have important biological func-
tions including a role in plant immunity (Shirasu et al.,
1999), maintenance of the diploid state in Aspergilfus nidu-
lans (Saclanandom et al., 2004), and embryogenesis in Cae-
norhabditis elegans (Shirasu et al., 1999). RAR1 homologs
are also present in eukaryotes, except for yeast (Saccharo-
myces cerevisiae) (Shirasu et al., 1999). Notably, metazoan
RART homologs possess the CS motif found at the C termi-
nus of GT1 (Shirasu et al., 1999; Kitagawa et al., 1999).
Such fusions, in which two domains are found in a single
protein in one species, are often indicative of physical inter-
actions between the two domains that are present in two
separate proteins in another species (Marcotte et al., 1999).
Indeed, AtSGT1 has been shown to interact with Arabidop-
sis RART (AtRART1} in yeast (Azevedo et al., 2002).

Physical interaction of HSP90, SGT1, RAR1, and R (or
NOD) proteins

It has been reported that HSP90 has many different sets
of co-cnaperones (Picard, 2002), whereas few physical
interactors have so far been identified for SCT1 and RART.
The MEEVD motif of HSP90 interacts with the TPR interac-
tion domain of co-chaperones such as Hop (Sti1 in yeast)
and PP5. The CS domain of SGT1 has a similar structural
motif to p23, an HSPI0 co-chaperone. Hence, the CS
domain of SGT1 is also capable of interacting with HSP90 in
human, yeast, and plants (Takahashi et al., 2003; Lee et al,,
2004; Catlett and Kaplan, 2006; Botér et al., 2007). RAR1
interacts with SGT1 via the CHORDII domain of RAR1T and
the CS domain of SCT1 (Azevedo et al., 2002; Botér et al.,
2007; wang et al., 2008). The CHORDI domain of RART is
also known to interact with the N-terminal half of HSP9gQ,
which contains the ATPase domain of this protein (Takahashi
et al., 2003; Botér et al., 2007).

HSF90-SGT1-RART and N, a resistance protein from
tobacco, exist in a single complex in N. benthamiana plants.
HSP90 directly interacts with the LRR domain of N in
tobacco (Liu et al., 2004). A pair-wise immunoprecipitation
experiment. demonstrated interactions between not only
HSP90 and RPM1 (an R protein) but also between RAR1
and SGT1 (Hubert et al., 2003). In this particular experi-

ment, the authors reported that the HSP90 interaction with
RAR?T does not require SGT1, nor does the HSP90 interac-
tion with SGT1 require RART. These data suggest that RPM1
is an HSPI0Q client, and that RAR1 and SGT1 function inde-
pendently as HSP90 cofactors. SGT1 has also been shown
to interact with plant R proteins (Bieri et al., 2004; Leister et
al., 2005). These findings suggest that the HSP90-SGT1-
RART chaperone complex interacts with plant R proteins.
Chp-1, a mammalian homologue of plant RAR1, interacts
with the TPR domain of PP5 and the ATPase domain of
HSP90 via the CHORD | and Il domains, respectively
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Figure 2. Physical interactions between HSP90-SGT1-RAR1 and
plant NB-LRR R and mammalian Nod proteins. Moiifs critical for pro-
tein-protein interactions are indicated. CHP-1 is an animal RAR1
homologue (Hahn, 2005). CC, coiled-coil; CCCH, cysteine- and his-
tidine containing domain; CHORD, cysteine- and histidine-rich
domain; CS, CHORD and SGT1 motif; SGS, SGT1 specific motif;
LRR, leucine-rich-repeat; NB, nucleotide binding site; TIR, Toll-inter-
leukin-1-receptor; TPR, tetratricopeptide repeat; VR, variable region.
Arrows indicate protein-protein interactions.
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(Hahn, 2005). The mammalian CS and SGS domains of
SCT1 are required for the interaction of this protein with
LRR domains of NALP3 (Nod-like receptor) and Nod1,
which are structurally related to the plant NB-LRR resistance
proteins (da Silva Correia et al., 2007a; Mayor et al., 2007).
This indicates that the CS ard/or SGS domain of SGT1 may
associate with plant R proteins. In addition, the CS and SGS
domains of SGT1 have been shown to be associated with
HSP9O (Mayor et al., 2007). Nod1, which harbors a com-
mon structural feature with the plant NB-LRR proteins, is an
intracellular sensor of bacterial peptidoglycan and alsc asso-
ciates with the HSP90 complex (Hahn, 2005). HSP90 and
SGT1 both contribute to the stability and activation of Nod1
(Hahn, 2005; da silva Correia et al., 2007a) and HPS90 is
also crucial for Nod2 activity (Mayor et al., 2007). The inter-
actions among the HSP90/RAR1/SGT1/R (or NOD) proteins
are summarized in Fig. 2.

MULTI-FUNCTIONALITY OF THE HSP90, SGT1 AND
RART MOLECULAR CHAPERONE COMPLEXES

The accumulated evidence to date indicates that complex
formation by HSP90, SGT1 and RAR1 with diverse proteins
may explain their multi-functionality in plant immune
responses against invading pathogens and in the cellular
processes required for proper plant growth and develop-
ment. Here the current view of their involvement in disease
resistance pathways is discussed.

Plants have evolved an effective immune system to resist
attack by microbial pathogens. This defense mechanism is
primarily dependent upon sophisticated responses via the
recognition of pathogen associated molecules (often calted
MAMPs or PAMPs) by pattern (or pathogen) recognition
receptors (PRRs) (Dardick and Ronald, 2006; Jones and
Dangl, 2006; Bittel and Robatzek, 2007). The activation of
these PRRs leads to active defense responses and basal resis-
tance against a broad range of attacks.

Plants also possess R protein-mediated resistance, gov-
erned by resistance (R) genes, many of which encode NB-
LRR or receptor kinase proteins. R protein-mediated resis-
tance is often associated with a hypersensitive response (HR)
and is triggered upon recognition of pathogen effector or
avirulence (Awr) proteins (Hammond-Kosack and Jones,
1997; Martin et al., 2003; Nimchuk et al., 2003; Lee and
Lee, 2005; Jones and Dangl, 2006; Lee et al., 2006; Bent
and Mackey, 2007). Significantly, HSP90, SGT1, and RAR?
have been shown to play a role in both basal and R protein-
mediated resistance in plants.

Basal defense

Basal defense does not lead to strong levels of disease
resistance in plants, but provides a first line of defense
against pathogenic invaders. It is known that mutations in
rar1 enhance the susceptibility of both Arabidopsis and bar-
ley to virulent pathogens (Holt et al., 2005; Jarosch et al.,
2005). In Arabidopsis, rar7 mutations in different genetic
backgrounds allow the enhanced growth of the virulent bac-
terial strain P syringae pv. tomato (Pst) DC3000 (Holt et al.,
2005). In barley, RART contributes to resistance in the epi-
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dermis and mesophyll during the differentiation stages of
infection of the fungus Magnaporthe grisea, and this is
dependent on the MLO/mio-5 status. The loss of RART pro-
motes susceptibility in the mlo-5 background to a compati-
ble M. grisea isolate (Jarosch et al., 2005). These data
demonstrate the essential role of RART in the basal resis-
tance mechanism that limits pathogen growth in susceptible
plants.

Consistently, the overaxpression of the rice ortholog
OsRART significantly increases basal resistance to a virulent
bacterial blight pathogen Xanthomonas oryzae pv. oryzae
(Xoo) strain PXO99. These transgenic rice plants also show
enhanced resistance to virulent blast fungal M. grisea races
(Wang et al, 2008). In the same study, the rice SCT1
(OsSGT1) gene was also tcund to enhance the basal resis-
tance to the virulent Xoo ard M. grisea races, suggesting that
SGT1 is also possibly invotzed in basal resistance in plants.
In contrast, mutations in H*P90 do not affect the plant basal
resistance to the virulent pathogen Pst DC3000 (Hubert et
al., 2003; Takahashi et al., 2003).

Notably, the Arabidopsis RART gene is targeted by the P
syringae effector AvrB which suppresses MAMP-triggered
host immunity. When Avr is expressed in plants lacking the
cognate resistance gene KPMT, this causes a suppression of
the cell wall defense systern induced by a well known flagel-
lar peptide MAMP flg22 iShang et al., 2006). Furthermore,
co-immunoprecipitation experiments have indicated that
RART and AwrB interact in the plant. It is also well known
that RAR1 is required for the function of multiple resistance
proteins (see R protein-mediated disease resistance). Hence,
it is possible that R proteins are recruited to a protein com-
plex containing RART to monitor effectors that suppress
basal resistance. This wculd suggest a role of RART as a
molecular link between cffector virulence function and
effector-triggered immunitv.

R protein-mediated disease resistance

HSP90, SGT1, and RAR associate with R proteins and
initiate a signaling cascade in plant immune responses
(Shirasu and Schulze-Lefert, 2003). The functions of these
chaperone proteins in disease resistance responses in many
monocot and dicot plant species have also been extensively
investigated by mutant analyses (Shirasu et al., 1999; Austin
et al., 2002; Hubert el al., 2003; Lu et al., 2003; Takahashi
et al., 2003; Chandra-Shekara et al., 2004) and by virus
induced gene silencing (VIGS)-mediated functional analyses
{Liu et al., 2004; de la Fuenie van Bentem et al., 2005; Leis-
ter et al., 2005; Scofield er al., 2005; Bhattarai et al., 2007)
(Table 1). In particular, components of the molecular chap-
erone complexes are well studied in the Arabidopsis R pro-
tein-mediated immune responses to two different pathogens,
P syringae and P parasiticc. HSP90 and RAR1 are required
for RPM1, RPS2, and RPS+, which are well characterized R
proteins against P syringae isolates (Austin et al.,, 2002;
Hubert et al., 2003; Takahashi et al., 2003}, but SGT1 is not
required by these R proteins. Similarly, P parasitica resis-
tance proteins, such as RPF2, RPP4, and RPP8, employ dif-
ferential components of H35P90, SGT1, and RAR1 during
the plant immune response. RPP2 requires SGT1 but does
not require RART1. In the case of RPP4-mediated resistance,
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however, both SGT1 and RAR1 are essential, whereas RPP8
does not require either of these proteins for a disease resis-
tance response (Austin et al., 2002}.

Such differing signal specificities have also been identified
in interactions of the barley MLA resistance proteins and the
pathogeri powdery mildew. For example, SCT1 and RART
are required for MLA6- and MLA12-, but not MLA1-, medi-
ated resistance (Azevedo et al., 2002). Consistently, tobacco
N, a Tobacco mosaic virus resistance protein, and wheat
Lr21, a Puccinia triticina resistance protein, require each of
the HSP90, SGT1, and RAR1 proteins in plant immune
responses against their target pathogens (Peart et al., 2002;
Lu et al., 2003; Liu et al., 2004; Scofield et al., 2005). Fur-
thermore, tomato Mi-mediated resistance was recently
demonstrated to require HSP90 and SGT1 for insect and
nematode resistance (Bhattarai et al., 2007). In summary,
HSP90 is intimately involved in many of the examined R
protein-rediated disease resistance pathways, whereas
RAR1 and SGT1 show differential contributions to each of
the R proteins (Table 1).

In contrast to the essential role of SGT1 in R protein-
mediated disease resistance against biotrophic pathogens, it
is noteworthy that in Nicotiana benthamiana, SGT1 is
involved in symptom development during disease suscepti-
bility to a necrotrophic fungus Botrytis cinerea (Oirdi and
Bouarab. 2007). SGT1 also has a role as a positive regulator
of HR mediated by some R proteins such as RPP4, RPP31,
and RPS5 (Zhang et al. 2004; Holt et al. 2005). Given that
HR is important for the virulence of B. cinerea (Covrin and
Levine, 2000), these data suggest that B. cinerea uses the
HR-controlling gene SGT1 to establish disease.

HSP90 and SGT1 functions in plant development

HSP90 is essential for normal growth and development in
N. benthamiana and Arabidopsis (Queitsch et al., 2002; Liu
et al., 2004; Sangster and Queitsch, 2005; Sangster et al.,
2007). In experiments using a Jobacco rattle virus (TRV)-
based VIGS system, HSP90-silenced N. benthamiana plants
show meristem death and a severely stunted growth pheno-
type with chlorotic leaves (Liu et al., 2004). HSP90-depen-
dent phenotypes have also been extensively studied in
Arabidopsis treated with the specific HSP90 inhibitor
geldanamycin or harboring a silenced HSP90 gene family
(Queitsch et al., 2002; Sangster and Queitsch, 2005; Sang-
ster et al., 2007). In these studies, a lack of HSP90 caused a
variety of phenotypes such as alterations in flowering time,
morphological features, and total seed set. Moreover, the
phenotypic changes induced by HSP90 reduction were
found to be dependent on the environmental temperature,
suggesting that HSPIO0 functions at the interface between
developmental and environmental cues.

SGT1 is required for SCF"®'-mediated auxin responses in
Arabidopsis (Gray et al., 2003) which include auxin-related
processes such as the inhibition of root growth, lateral root
development, and hypocotyl elongation in temperature
dependent manner. In addition, the roots of OsSGT7-over-
expressing rice plants show less sensitivity to 2,4-D in com-
parison with wild type plants (Wang et al., 2008), which
suggests that OsSGT1 is also involved in auxin-mediated sig-
naling.

OsSGT1  also interacts with a ubiquitin-conjugating
enzyme, Radé, in yeast (Yamamoto et al., 2004). Radé6 is

Table 1. Requirement of HSP90, SGT1, and RAR1 in R protein-mediated disease resistance.

Host R protein Pathogen or pest HSP90  SGT1T  RART References
Arabidopsis RPM1 (CNLP?  Pseudomonas syringae Yes® Ng® Yes  Austin et al., 2002; Hubert et al., 2003
Arabidapsis RPS2 (CNL) Pseudomonas syringae Yes No Yes  Austin et al., 2002; Takahashi et al., 2003
Arabidopsis RPS4 (TNL) Pseudomonas syringae Yes No Yes  Austin et al., 2002
Arabidopsis RPP2 (TNLY  Peronospora parasitica NT® Yes No  Austin etal., 2002
Arabidopsis RPP4 (TNL) Peronospora parasitica NT Yes Yes  Austin etal., 2002
Arabidapsis RPP8 (CNL) Peronospora parasitica NT No No  Austin etal, 2002
Arabidopsis RPWS (CC) Erysiphe cichoracearum NT Yes NT  Peartt et al, 2002
Arabidopsis HRT (CNL) Turnip crinkle virus NT No No Chandra-Shekara et al., 2004
Barley MLAT (CNL)  Blumeria gaminis NT No No Azevedo et al. 2002
Barley MLAG (CNL)  Blumeria gaminis NT Yes Yes Azevedoetal., 2002
Barley MLA12 (CNL}  Blumeria gaminis NT Yes Yes  Shirasu et al., 1999
Pepper Bs2 (CNL) Xanthomonas campestris NT Yes No Leister et al., 2005
Potato Rx (CNL) Potato virus X Yes Yes NT  Peartetal, 2002; Lu et al., 2003
Tobacco N (TNL) Tobacco mosaic virus Yes Yes Yes  Peart et al, 2002; Liu et al., 2004
Tomato CF4 (LRR) Cladosporium fulvum NT Yes NT  Peartetal, 2002
Tomato CF9 (LRR) Cladosporium fulvum NT Yes NT Peartetal, 2002
Tomato -2 (CNL) Fusarium oxysporum Yes NT NT  de la Fuente van Bentem et al., 2005
Tomato Mi (CNL) ﬁggﬁ?ﬁgﬁfﬂ*‘g& hobiae  Yes  Yes  No  Bhatiarai et al., 2007
Tomato PTO (kinase)  Pseudomonas syringae Yes Yes NT Peartetal, 2002; Lu et al., 2003
Wheat Lr21 (CNL) Puccinia triticina Yes Yes Yes Scofieid et al, 2005

4CNL, CC-NBS-LRR. TNL, TIR-NBS-LRR.
®es, dependent. No, not dependent. NT, not tested.
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known to pfay a central role in the post-replication repair
pathway (Xiao et al., 2000}, and its interaction with OsSGT1
suggests an involvement of this co-chaperone in DNA
repair, possibly by degrading repair-related proteins. This is
supported by the finding that the expression of both genes is
induced by exposure to DNA-damaging agents such as UV
and H,;O; (Yamamoto et al., 2004).

POSSIBLE MECHANISMS UNDERLYING THE
ACTION OF THE HSP90-SGT1-RART MOLECULAR
CHAPERONE COMPLEXES IN PLANT IMMUNITY

As discussed above and shown in Table 1, HSPS0-SCT1-
RART complexes are critical for resistance to diverse plant
pathogens and pests (Table 1). Although the mechanism
underlying the role of these complexes is unclear, it is likely
that the H5P90-SGT1-RAR1 complex is involved in stabiliz-
ing R proteins ([1] in Fig. 3A). Recent studies also suggest
that R proteins exist in multi-protein complexes and thereby
require chaperones to maintain their function (Hubert et al.,
2003; Muskett and Parker, 2003; Shirasu and Schulze-
Lefert, 2003; Liu et al. 2004 Holt et al., 2005; Azevedo et
al., 2006; Botér et al., 2007). Miss-assembled R proteins
may be non-functional or detrimental to the plant cell. in
such cases, the HSP90-SGT1-RART chaperone complex
likely contributes to the stability of its substrates, This con-
cept is supported by the fact that HSP90-mediated signal-
ing substrates become unstable when HSP90 activity is
inhibited (Picard, 2002). In other words, these chaperone
complexes bind R proteins and modulate their stability.

In this context, the fact that a subset of R proteins appears
to be affected by rar? mutations can be explained by a
“threshold model”. When destabilized in an rar7 mutant
background, RAR1-independent R proteins accumulate at
relatively high steady-state levels that are above the thresh-
old required for efficient defense responses (Bieri et al.,
2004). In contrast, RAR1-dependent R proteins are present
at relatively lower levels than this critical threshold in rar?
mutants. Interestingly, a previous report has shown that the
impaired resistance of some Arabidopsis R proteins, such as
RPS5, in the rarT mutant background is recovered in an
rar1/sgt1b double mutant (Holt et al., 2005}. This study
demonstrated that while RPS5 accumulates to only 13% of
the wild type levels in the rar? mutant, the accumulation of
R protein was restored to about 60% of wild type levels in
the rar1/sgt1h mutant. This finding suggests that AtSGT1b
antagonizes the RART- and HSP90-dependent accumula-
tion of R proteins, and that AtSGT1b assists in the degrada-
tion of these proteins.

It is known that Arabidopsis contains two SGT1 isoforms,
AtSGT1a and AtSGT1b, which are highly conserved in terms
of their TPR-CS-SGS domain structures. When AtSGT1a is
expressed above a certain level, some NB-LRR R proteins
such as RPS5 in an sgt1h mutant background are stahilized
(Azevedo et al., 2006). It is therefore possible that an R pro-
tein deficiency, including that of RPS5, is recovered by
lower AtSGT1a levels in the rar1/sgtlb mutant as this allows
the assembly of competent chaperone complexes.

The HSP90 chaperone complexes may regulate confor-
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Figure 3. Hypothetical model showing the role of the H5P90-5GT1-
RAR1 complex in R protein-mediated disease resistance. (A) Effects
on R protein: The HSPI0-SGT1-RART (molecular chaperone, MC;

low) complex is directly involved ir regulating R protein {orange)

changing accumulation levels of the R protein (1), R protein con-
formation (2}, and/or R protein localization (3). (B) Effects on regula-
tors involved in the downstream signaling events: The HSP90-SCGT1-
RART complex remaoves a negative (N; red) regulator via a ubiquitina-
tion (Ub)-mediated degradation process (4) or recruits a positive (P;
green) regulator as a substrate (5). Awr, avirulence factor.

mational changes in the R proteins (2] in Fig. 3A). In the
absence of pathogens, R proteins are functionally silenced
by intra-molecular interactions (Moffett et al., 2002; Belkha-
dir et al, 2004). Structure-function studies of the potato
NB-LRR protein, Rx, have demonstrated that physical inter-
actions occur in vivo between the NB-LRR domain and the
amino-terminal CC motif, and also between the LRR and
the CC-NBS domains {Moffett et al., 2002). Interestingly,
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these interactions are disrupted in the presence of the Avr
protein, P¥X coat protein (CP), leading to an activated unsta-
ble form of Rx, which the NB domain that mediates down-
stream signaling is exposed (Moffett et al., 2002; Belkhadir
et al., 2004). CP can convene or relieve molecular compo-
nents that induce conformational changes in Rx. The
HSP90-SCGT1-RART molecular chaperone complex is associ-
ated with R proteins (Hubert et al., 2003; Muskett and
Parker, 2003; Shirasu and Schulze-Lefert, 2003; Liu et al.
2004; Holt et al., 2005; Azevedo et al., 2006), suggesting
that it facilitates a fine-tuning of their conformation that can
either lead to signal competent forms that mediate rapid
activation of defense responses, or prevent inappropriate
activation of the plant defense response that could cause a
decreased cellular viability.

Chaperone conplexes may also modulate the localiza-
tion and trafficking of R proteins ({3] in Fig. 3A). Recent find-
ings indicate that nucleo-cytoplasmic partitioning and
nuclear activity are crucial for the function of several
immune sensors (Shen et al., 2007; Shen and Schulze-
Lefert, 2007). Notably, OsSCT1 and its interaction com-
plexes are ubiquitously localized in the cytoplasm and
nucleus (Wang et al., 2008}, indicating that SGT1 likely shut-
tles between the cytoplasm and nucleus. It is thus possible
that intra-molecular disulfide bonds among the conserved
cysteines in SGT1 prevent TPR-mediated self-assaciation,
which in turn induces a dominant monomeric form of this
protein. This form of TPR might play role in disease resis-
tance signaling as a cellular sensor.

A similar mechanism of action is observed in NPR1-medi-
ated plant defense responses. NPR1 is an essential regulator
of systemmic acquired resistance (SAR) in plants, which regu-
lates defense responses to a broad range of pathogens. Acti-
vation of NPRT is dependent on ils monomeric versus
oligomer:¢ form. A reduced monomeric NPR1 accumulates
in the nucleus and activates the expression of pathogenesis-
related (PR} genes, whereas the oligomeric form is retained
in the cytoplasm (Mou et al., 2003).

It is also possible that the molecular chaperone complex is
involved in recruiting positive or removing negative regula-
tors involved in the downstream signaling events during
resistance responses ([4] and [5] in Fig. 3B). In this context,
SGTT may play an important role in the SCF-ubiquitination-
mediated degradation of negative regulators of the defense
response. SCF complexes are one of the RING-type ubig-
uitin E3 igases that attach ubiquitin to target proteins, which
are then eventually degraded by the 26S proteasome
(Deshaies, 1999). In support of this notion, RING-type ubig-
uitin E3 ligases have been identified as critical components
of the plant defense response (Salinas-Mondragon et al.,
1999; Durrant et al., 2000; Wang et al., 2006). Importantly,
the RART-SGT1 complex interacts with Arabidopsis CSN4
and CSN5, two COP9 signalosome components (Azevedo
et al., 2002). Moreover, the silencing of genes encoding
SKP1 and subunits of the COP9 signalosome causes the loss
of R gene-mediated resistance in N. benthamiana (Liu et al.,
2002). In animal immunity, Nod1 also interacts with the
COPY complex (da Silva Correia et al., 2007h), which is
consistet with the finding that plant R proteins bind this
complex.. The association of N and Nod1 with SGT1 and

~d

the COP9 complex suggests that SGT1 is involved in ubig-
uitination-mediated immune responses in plants and mam-
mals. Thus, SGT1 SCT1 likely plays a role in targeting
resistance-regulating proteins for degradation by the 26S
proteasome via a specific SCF complex (da Silva Correia et
al., 2007b). Consistently, a previous repart has shown that
the Arabidopsis SGT1b protein has an RART-independent
function that regulates programmed cell death HR during
pathogen infection (Holt et al., 2005). In this study, SGT1b
was found to be required for HR mediated by some R genes
including RPS5-, RPP4- and RPP37 (Holt et al. 2005). This
also suggests that SGT1b may eliminate unidentified nega-
tive regulators.

As mentioned above, possible hypotheses for the mecha-
nistic action of the HSP90 chaperone complexes are out-
lined in Fig. 3. In summary, a balanced activity of RART and
SGT1, in concert with HSP90, can modulate the stability or
conformation changes of R proteins, as well as their signal-
ing competence.

CONCLUDING REMARKS

The molecular chaperone complex HSP90-SGT1-RART1
has diverse. biological and cellular functions in plants. In the
plant immune system, cytosolic HSP90 is a chaperone pro-
tein that maintains the steady-state accumulation of R pro-
teins. SGT1 forms a complex with SCF ubiquitin ligase
components and can both positively and negatively regu-
late NB-LRR protein accumulation, depending on the
genetic background. RART plays a generic rote in maintain-
ing the R protein levels. In addition, HSP90 can employ
SGT1 and RAR1 as co-chaperones either to recruit clients
that are involved in positive signaling or to remove negative
signals. The HSP90-SCT1-RART complex thus coordinately
contributes to the stability and activation of R proteins and is
therefore a critical component of the plant immune
responses.
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